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ABSTRACT

Probably the single most important limitation of mean-variance optimization as a
practical tool for investment management is the statistical instability of mean-variance
optimized portfolios. Mean-variance optimizers often function as a chaotic investment
decision system. The algorithm overuses statistically estimated information and
magnifies the impact of estimation errors. It is not a simple matter of garbage in, garbage
out, but, rather, a small amount of garbage in, a large amount of garbage out. The result
is that optimized portfolios often have little, if any, reliable investment value. Indeed,
research has shown that an equally weighted portfolio may often be substantially closer to
true mean-variance optimality than an optimized portfolio. The failure of optimized
portfolios to meet investment objectives in many cases has led a number of sophisticated
institutional investors to abandon the technology for simpler alternatives and to an
increased reliance on intuition and priors. The problems of mean-variance optimization
are not easily solved with alternative risk measures or objective functions. They are
endemic to many optimization procedures.

This report will focus on some key statistical characteristics of mean-variance
optimization. The scope is limited to traditional mean-variance asset allocation. This
area of application includes many investment management situations of practical interest.
Methods for reducing the instability of the optimization process and enhancing its
investment value are introduced and illustrated with historical data. The two major
categories of enhancements are: Statistical estimation techniques and investment related
priors. Such methods can reduce the impact of estimation errors, enhance the investment
meaning of the results, provide an understanding of the degree of precision, and stabilize
the optimization. In isolation, each procedure can be helpful; together they may have a
substantial impact on enhancing the investment value of mean-variance asset allocation.

The problem of mean-variance optimization instability is ultimately one of over-fitting
data. Assuming mean-variance efficiency is the appropriate investment objective, the
procedure emerges in a fundamentally altered role: Mean-variance optimization as the
basis for tests of efficiency rather than as a prescription for optimal portfolio construction.
“Statistically efficient” asset allocations are unlikely to reflect. error maximization
characteristics, The stability of the new procedure is reflected in the additional
investment benefit of a significantly reduced need to trade.
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Markowitz (1959) mean-variance efficiency is the classic financial paradigm for
efficiently allocating capital among risky assets. Given estimates of the mean, standard
deviation and correlation for a set of assets, it provides precise prescriptions for optimal
asset allocation. The Markowitz efficient frontier represents the collection of all mean-
variance efficient portfolios in the sense that all other portfolios have less expected return
for a given level of risk or, equivalently, more risk for a given level of expected return.
Risk is defined as the variance of returns.

Mean-variance efficiency has been applied to many investment situations. An active
international equity manager may want to find optimal asset allocations among
international equity markets based on market index historical returns. A plan sponsor
may want to find an optimal long-term investment policy for allocating among domestic
and foreign bonds, equities and other asset classes. An active domestic equity manager
may want to find the optimal equity portfolio based on forecasts of return and estimated
risk models. In these cases, and many others, mean-variance optimization serves as a

framework for optimally allocating capiwmly Tlexible to
consider various trading costs, constraints dnd levels of risk.

The fogg‘s\ .-0{ threp%rt ‘is&radiztj(z%alﬁsset allocation for major asset classes. The number
of risky ass'etg.jni’%tu&y rarely exceed Tifty, and typically is in the range of ten to twenty.
Asset classes often considered include U. 8. equities, corporate and government bonds,
international equity and bond indices, real estate and venture capital. Historical data is
often used to estimate the input parameters. The asset allocation problem can be
contrasted to the typical equity portfolioc optimization situation. Domestic equity
portfoliof optimizations typically consider a hundred to five hundred stocks; international
equity portfolio optimizations may include a thousand or more stocks. Equity portfolios
normally include the influence of a commercial factor risk model and proprietary return
forecasts, substantially increasing the complexity of the analysis of the optimization. In
contrast, the asset allocation problem reflects a purer framework for the analysis of mean-

variance optimization.

We begin the report with a typical mean-variance asset allocation problem and use it as
the basis for comparing alternatives and enhancements. Traditional objections to mean-
varjance optimization are described and reviewed. The central theme of the paper is then
proposed: The most serious limitation of mean-variance optimization as a practical tool
of investment management is the statistical instability of the optimization process,
leading to optimized portfolios that often have little, if any, investment value. Various
proposals for enhancing the investment value of mean-variance optimized portfolios are
given. Such procedures stabilize the process and minimize the influence of statistical
errors in the estimates by introducing investment relevant priors, more powerful and
appropriate statistical estimation procedures, and methods for dealing directly with the
statistical variability of the prescribed allocations. Each proposal is illustrated using the
data in the original example. An alternative view of the practical investment value of
mean-variance efficiency is presented: Mean-variance optimization is more reliably a
statistical test for mean-variance efficiency than a prescription for finding optimal
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allocations. A procedure based on the notion of “statistical efficiency” is proposed for
defining more reliably efficient asset allocations. The procedure also has the additional
benefit of requiring less trading. An equivalence relationship between mean-variance
optimization and a suitably defined constrained linear regression is noted that sheds light
on both procedures. Finally, a summary of the resuits is provided.

CLASSICAL MEAN-VARIANCE ASSET ALLOCATION

1. An Example

Consider an active global asset manager allocating capital to the following eight major
asset classes: U. S. stocks and government/corporate bonds, Euro bonds, and the
Canadian, French, German, Japanese and United Kingdom equity markets. The
optimization inputs are computed from 198 months of index total returns in U. S. dollars
for all eight asset classes and for U. S. 30 day t-bills, for the historical period: January
1978 to June 1994. The efficient frontier solutions assume no short selling (all
allocations are non-negative). A quadratic programming algorithm is used to find the
optimal mean-variance efficient frontier asset allocations under the assumptions. The
results of the analysis is given in Figure 1. The Markowitz mean-variance efficient
frontier is plotted with “+” signs. The (monthly) means and standard deviations of the
assets are given in Table 1 and plotted in the figure and labeled as indicated.

Since the Japanese market index had the highest average monthly return for the period, it
is on the efficient frontier at the most northeast point of the curve. The minimum risk
portfolio is nearly one hundred percent Euro bonds, with 0.84% average return and 1.41%
standard deviation. Other points on the efficient frontier will lie between these two
extremes. For example: The efficient frontier asset allocation with average return 1.56%
and standard deviation 4.58% (about half way between the largest and smallest return
efficient portfolio) is approximately 20% U. S. equities, 20% Euro bonds, 20% French
stocks, 25% Japanese stocks, and 15% U. K. stocks.

Some results of interest include: U. S. bonds significantly underperformed all other
assets and an efficient portfolio for its level of risk. Except for Japan, all equity markets
significantly underperformed the efficient portfolios at their level of risk. In this period,
it paid to be efficiently diversified.

2. Reference Portfolios and Portfolio Analysis

Mean-variance analysis can have more practical value if it includes reference portfolios.
We define the three reference portfolios as given in Table 1:
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TABLE 1
HISTORICAL DATA AND REFERENCE PORTFOLIOS (%0)
JANUARY 1978-JUNE 1994

U.S. U S. EURO CANADA FRANCE GERMAN  JAPAN U. K.
STocks BoNDS BONDS STOCKS STOCKS STOCKS STOCKS STOCKS
MEAN I.19 0.81 0.82 0.99 1.58 1.17 2.21 1.63
ST.DEV. 4,37 2.04 1.41 5.64 7.16 6.36 991 7.98
INDEX 30 0 0 5 10 10 35 10
CURRENT 25 20 5 5 10 0 20 15
EQuUAL 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

U.8.30 Day T-Bill rate Mean=0.60  St.Dev.=0.24

Figure 2 provides the results of including the reference portfolios in the efficient frontier
analysis. As shown in the figure, all three reference portfolios plot close to the efficient
frontier. The near efficiency of the current portfolio may lead us to conclude that it is
sufficiently close that it does not need to be rebalanced. However, compare the current
portfolio’s composition to that of the efficient portfolio nearest it: 15% UJ. S. stocks, 35%
Euro bonds, 15% French stocks, 25% Japanese stocks, 10% U. K. stocks. The portfolios
are not particularly similar. Also note that an equal weighted portfolio is nearly mean-
variance efficient as well. Does the fact that very different portfolios may have nearly
similar risk and return indicate that the apparent optimality of the current portfolio is
more apparent than real? Such issues will be further investigated below.

3. Return Premium Efficient Frontiers

It is often convenient to use return premiums, instead of total returns, as the basis of the
mean-variance analysis. The return premium is simply the return minus the (nominal)
risk free rate. For monthly returns, the short term rate is usually defined as the U. S. t-bill
30 day rate of return. The mean and standard deviation over this period is given in Table
1. Return premiums provide a more direct and investment meaningful measure of refurn
for investment in risky assets. Return premiums are also similar to real rates of return,
which are defined as excess return with respect to the inflation rate. Real rates, and
consequently return premiums, may be relatively more stable than total returns across
time. Return premiums are also convenient for comparing the results of one time period
by eliminating the effect of changing riskless rates. Figure 3 provides an asset allocation
analysis for the data in Figure 2 when return premiums are used. The data in Figure 3
will be used as the basis of many of the subsequent examples.

TRADITIONAL CRITICISMS OF MEAN-VARIANCE ASSET ALLOCATION

A number of criticisms have been directed at mean-variance efficient frontier analysis.
Many can be classified in the following four categories: 1) Alternative measures of risk;
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2) Alternative utility functions; 3) Long- vs. short-term investment horizons; 4}
Alternative procedures. Each are discussed separately below.

1. Alternative Measures of Risk

The variance or standard deviation of return measures variability above and below the
mean. From an investment point of view, the variability of returns above the mean can
hardly be considered “risk”. One obvious risk measure alternative, discussed in
Markowitz (1959), is the semi-variance or semi-standard deviation of return. In this case,
only returns below the mean are included in the estimation of risk. Such an approach is
similar to an optimization with an objective function based on “downside” risk. There
are%farobiems with the senﬁ-vaﬁance!ﬁtegla_t‘i_\g' il distribution of asset returns
are approximately symmetric, 6-of riskeJead to the same conclusion. Also,

i i i based on th i-
efficient frontier algon;_lzlzs. jia;e’ 01%;'_ ¢ semi-varjance are ot as well ﬂe}f%o_pfd as they

a;cforttzi_&vir%e.r*,“_ﬁ. sl FECrentt o n gy Coray

Many other risk measures are also available. Some of the more important include the
mean absolute deviation and range measures. The pros and cons of various alternatives
depend critically on the assumed nature of the asset return distribution. Because
historical equity index returns are often nearly symmetric, éand -f):ec-:alrs"e 'c‘)f the
convenience w clatively high state of development of mean-variance based algorithms,

many analystsgprefer to use a mean-variance efficient frontier approach.

2. Alternative Utility Functions H -/ bty v e St
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Unless asset returns e"ﬁo y dlitl;l_bw; agMarkowitz meag.yariance analysis is

rigorously consistentjonly quadratic utilitye—FIe many lniitations of a quadratic
utility function as a representative of investor behavior are well known. Numerous
alternative functions have been proposed as the basis of more rational investor decision
making. Such approaches optimize expected utility directly leading to asset allocations
that may bear little resemblance to efficient frontier portfolios.

The problem with the utility function approach is that an investor’s utility is seldom, if
ever, known with any specificity, The lack of specificity can be a more daunting problem
than it may appear. This is because a class of utility functions can have similar functional
forms, perhaps differing in the value of one two parameters, yet reflecting a very wide
spectrum of attitudes towards bearing risk and implying sharply different investment
behavior (Rubinstein, 1973). As a practical matter, the problem of specifying with
sufficient accuracy the appropriate utility function for a given investor appears to be no
less a limitation than those posed by traditional mean-variance analysis.

On the other hand, a strong case for quadratic utility, not as an exact representation of
investor behavior, but as a useful approximation to expected utility maximization, can be
made. At a given point, reasonable (non-pathological) utility functions are often well
approximated by a (quadratic) function of the mean and the variance.” While the
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o d -5 t e
coefficients of the best approximating‘ mean-variance tion may vary at different
points of the expected utility function, in many casesfincreased expected utility is
consistent with more € expect d return and less variance. Consequently, mean-variance
efficient portfoho may—be 1 as approximations for maximizing expected utility (see
Levy and Markowﬂz 1979).

The use or non-use of utility functions in investment analysis is often a dividing line
between practitioners and academics. From a rigorous point of view, only the
specification of a utility function will do for solving optimality. However, given the
difficulty of estimating utility functions with sufficient precision, mean-variance
efficiency is often the practical tool of choice.

3. Long- Versus Short-Term Investment Horizon

One significant limitation of Markowitz mean-variance efficiency is that it is formally a
single-period investment tool. In practice, institutional investors, such as endowment
funds and pension plans, are often interested in return over long investment horizons.
Portfolios that are short-term optimal need not be optimal in the long run.

The geometric mean or compound return is the statistic of choice for summarizing the
investment implications of long-term return over time. In his classic study, Markowitz
(1959, ch. 6) examined the long-term or geometric mean return associated with mean-
variance efficient frontier portfolios. Using an example he showed that geometric mean
return did not always increase as the risk of efficient frontier portfolios increased. He
found that, beyond a certain point, increasingly risky efficient portfolios led to a
reduction in long term retumn. Taking Markowitz’ result to a logical conclusion,
Hakansson (1971a) astonished many financial economists by giving an example of a
mean-variance efficient frontier with negative geometric mean returns at all points. This
implied, in this case, that all mean-variance efficient frontier portfolios led to ruin with
probability one over sufficiently long time periods. Clearly, optimal single-period
decisions could lead to serious negative long-term investment consequences.

These negative results associated with mean-variance analysis can easily be remedied.
As a practical matter, the Hakansson efficient frontier is far from typical. In addition,
Markowitz analysis can easily be supplemented and the Hakansson objections largely
avoided with the use of geometric mean return analysis. Numerous mean-variance
approximations of the geometric mean are available (e.g., Young and Trent, 1969). From
such analyses one can determine the subset of efficient frontier portfolios that are long-
term (geometric mean) efficient. Consequently, if long-term return considerations are
important, limit consideration of Markowitz efficiency to the subset of efficient frontier
portfolios that are long-term geometric mean return efficient as well.

Objections to the geometric mean criteria have been raised on other grounds. In
particular, one major controversy surrounded the proposal (Hakansson, 1971b) of using
the (long-term) geometric mean as a surrogate for expected utility. The controversy
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cannot be repeated here.! The position taken here (as in Markowitz, 1977 and Michaud,
1981) is that the geometric mean can be useful as practical investment information and as
a supplement to efficient frontier analysts.

4, Alternative Methods: Monte Carlo Financial Planning Studies

Monte Carlo simulation studies have often be used to evaluate the funding implications of
investment return assumptions and portfolio decisions on the operation of the fund and
the funding of various cash flow liabilities. For example, in the case of an endowment
fund, a monte carlo simulation study can be useful for evaluating the consequences of a
particular asset allocation to endowment spending and fund value over various time
horizons based on assumptions of asset expected return and risk. By varying the portfolio
composition, the relative benefits of various asset allocations can be evaluated and an
optimal allocation chosen. The evaluation of the consequences of investment decisions in
terms of their impact on plan funding objectives, cash flows and period-by-period
operation of the fund over time is arguably a more financially meaningful benchmark
than mean-variance analysis.

However, the benefits of monte carlo simulation studies for defining an optimal asset
allocation are closely related to the issues of long- vs. short-term return in the previous
section. The monte carlo simulated relative benefits of alternative asset allocations will
generally simply reflect the mean-variance efficiency of the distribution of the N-period
geometric mean (Michaud 1976). Michaud (1981) provides a number of analytical tools
that can be used to forecast the mean and variance of the N-period geometric mean as a
function of the single-period mean and variance. These results can be helpful for the
design and analysis of monte carlo simulations. While monte carlo simulations are often
useful as a financial planning tool, their value for asset allocation is largely a function of
the implications of asset risk and return assumptions on the N-period geometric mean
return, which can be anticipated with analytic methods.

THE FUNDAMENTAL LIMITATIONS OF MEAN-VARIANCE EFFICIENCY

For practical asset management, the most serious limitation of mean-variance analysis is
probably its statistical instability. = Mean-variance optimizers function as “error
maxintizers” or chaotic investment management systems by over using statistical
information in the estimated parameters (Michaud 1989). It is not simply a matter of

garbage-in, garbage-out, but, rather, a small amount of garbage-in, a lot of garbage-out.

Demonstrations of the magnitude of the statistical instability of mean-variance
optimization, biases produced by mean-variance optimizers, and the likely investment
irrelevance of mean-variance optimized portfolios has been given by Jobson and Korkie
(1980, 1981). They showed, for example, that an equally weighted portfolio may often
be significantly more optimal than unconstrained mean-variance optimized portfolios.
Such results serve to rationalize the behavior of many institutional investors who have




STATISTICAL ASSET ALLOCATION Page 8

experienced the limitations of optimized portfolios and have voted with their feet by
abandoning mean-variance optimization for simpler, less error prone, alternatives.

R:— P A
THE STATISTICAL EQUIVALENCE E.EEIGm

An analysis of the statistical characteristics of mean-variance optimization may usefully
begin with a description of the variability in the procedure. Because a mean-variance
efficient frontier is a computation based on statistically estimated parameters, it has a
variance. While the true values of the input parameters are unknown, the variance of the
optimization process can be measured-indireetly using monte carlo simulation. Using the
estimated input parameters as a basis, we can monte carlo simulate new optimization
inputs and compute new efficient frontiers. If the simulated optimization inputs are the
same as the originals, the resulting simulated efficient frontier is the same as the original
and no variability is observed. Because the monte carlo simulated optimization estimates
are likely to be different, the resulting efficient frontier with the original efficient frontier
inputs will track below the original efficient frontier. By computing many monte carlo
simulated efficient frontiers, the amount of variability implicit in the data and the
efficient frontier procedure can be observed.

The statistical variability of the efficient frontier estimation process can be illustrated for
the historical data and assumptions in Figure 3. An exact replication of the data sampling
process is used in Figure 4 for each monte carlo simulated efficient frontier: optimization
inputs are computed for 198 monte carlo simulated monthly return premiums for the eight
asset classes from a distribution based on the original (198 months) estimated means,
variances and correlations. Figure 4 displays the results of 100 monte carlo simulated
efficient frontiers. Each simulated frontier is as likely to be efficient as the original mean-
variance efficient frontier. Consequently, all the simulated portfolios are mean-variance
equivalent and the area they occupy below the original efficient frontier can be described
as the “statistical equivalence” region.” The size of the statistical equivalence region
indicates the level of variability inherent in the data and the optimization process.

One issue of practical interest is the level of variability indicated by the size of the
statistical equivalence region as a function of the number of sample periods. In many
cases, smaller sample periods are of interest, since shorter time periods may represent
more homogeneous epochs for the return generating process. Often some compromise
must be made between using long time periods with variable economic and market
conditions and shorter time periods with too few data points for reliable estimation.
Figure 5 provides the results of estimating efficient frontier variability with 60 months of
sample data. These results are directly comparable to Figure 4 except for the number of
sample periods. Noteworthy in Figure 5 is the substantial expansion in the size of the
statistical equivalence region and that a number of asset classes are within or on the edge
when compared to Figure 4.
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EFFICIENT-FRONTIER ANALYSIS AS A STATISTICAL PROCEDURE

Mean-variance optimization is normally perceived as a tool for constructing optimal
efficient portfolios. However, due to the substantial statistical instability of the process,
the analyst must come to terms with the likely investment limitations of mean-variance
optimized portfolios.

An alternative approach, one with reduced possibility of investment irrelevance, is to use
the efficient frontier statistical equivalence region as the basis of a statistical test of
candidate portfolios. The approach is to select the appropriate optimization framework
and estimation procedure and estimate the statistical equivalence region. In most cases of
practical inferest, a number of candidate portfolios are available in an investment
organization. The test proceeds by determining the (after cost) position of the candidate
portfolios relative to the statistical equivalence region. If the choice is between two
portfolios, one within the statistical equivalence region and one outside, the portfolio
within is preferred. Alternatively, for a given portfolio, the statistical equivalence region
can be used to determine if it should be rebalanced. Heuristics guided by investment
priors and infuition are unlikely to be affected by statistical estimation errors and
investment irrelevant error maximized portfolios can be avoided. Some portfolio
heuristic procedures are discussed in the final section of this report.

The test procedure described in the previous paragraph is not statistically rigorous. A
formal test requires an understanding of the distribution of the statistical efficient
frontiers and the optimal partitioning of the statistical equivalence region based on type 1
error assumptions. More formal methods for inference can be based on Jobson and
Korkie (1985) and are discussed in the final section. The informal procedure is useful for
pedagogical and illustrative purposes.

Jobson (1991) provides an analytically derived estimate of the “sample acceptance
region” when portfolios are not sign constrained. As a consequence of the portfolio
construction differences, Jobson’s sample acceptance region is significantly different
from the shape of the statistical equivalence region in Figures 4 and 5: Jobson’s region is
open ended at the high risk return area of the efficient frontier; the Figure 4 and 5
equivalence regions are small at both end points.

The results in Figures 4 and 5 show that all three reference portfolios are well within the
statistical equivalence region. On the other hand, in the case of Figure 4, except for
Japan, the remaining assets can not be considered statistically efficient. Note however
that, in the case of Figure 5, many of the assets are within or near the statistical
equivalence region. This is consistent with the notion that the test region for Figure 5 has
less power to distinguish non-efficient assets and portfolios than Figure 4 because it 1s
based on a smaller sample size.

In both Figure 4 and 5, the current portfolio is well within the region of statistical
equivalence. Accordingly, we may conclude that it is “statistically efficient” and does
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not need to be rebalanced. One important investment consequence of statistical
equivalence region analysis is the likelihood of a significant reduction in the need for
trading and portfolio turnover. Consequently, the procedure can have an important
practical impact on enhancing performance.

ADMISSIBLE ESTIMATORS AND EMPIRICAL BAYES-STEIN ESTIMATION.

Admissibility is a minimal condition for an estimator. An estimator is admissible if no
other estimator is uniformly better for a given loss function. Stein (1955) has shown that
the classical method for estimating the means as inputs for optimization is not admissible.
Consequently, there are uniformly better methods for estimating optimization inputs than
those in common use by many practitioners and financial economists. Admissible
estimators of the mean “shrink™ the estimated returns back to a global prior. From an
investment point of view, admissible estimators reduce the amount of instability in the
optimization process by reducing the amount of statistical noise in the inputs.

A number of admissible estimation procedures for mean-variance optimization have been
proposed and tested (e.g., Brown, 1976, Jorion, 1986). Many of these methods address
shrinkage of the mean vector, leaving the covariance matrix unchanged. One
consequence of this approach is that, while the shape of the efficient frontier curve may
change, and the investor’s optimal efficient portfolio from an expected utility point of
view may change, the efficient frontier portfolios may remain the same.” Frost and
Savarino (1986) have proposed an empirical bayes-stein procedure which shrinks both
the mean vector and the covariance matrix. They use an informative prior that asserts
that the more the sample estimates differ from the average, the more likely there is
estimation error. Their method shrinks the estimated parameters to the common sample
value as a function of the extent those characteristics differ from the average for all

~ stocks.

. Figure 6 illustrates the results of using a Frost-Savarino Bayes-Stein Estimator for the

data in Figures 3 and 4. Comparing Figure 6 to 3 we find that average retum for the
efficient frontier and the assets lie in a narrower range than in the original data. This is
because the Bayes-Stein process shrinks the sample parameter values to the sample
average prior. When compared to Figure 4, the statistical equivalence region is slightly
more compact reflecting the shrinkage in the parameter estimates and the reduced amount
of variability in the inputs. One consequence of Frost-Savarino Bayes-Stein estimation is
that assets and portfolios are more likely to lie in the statistical equivalence region,
reducing the need for portfolio turnover and trading.

BENCHMARK OPTIMIZATION AND PRIORS

Benchmark optimization methods are among the most powerful for reducing the
instability of mean-variance optimization and for enhancing the investment value of the
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solutions (see e.g., Michaud, 1989¢). The increase in reliability is analogous to that of
classical statistical procedures when a reliable bayesian prior is introduced. In the
following, three benchmark methods are discussed: 1) Implied Return; 2) Index-Relative
Return; 3) Economic Liabilities. Each method restructures the optimization process by
the introduction of a prior in the form of a portfolio that is defined to be efficient or no-
information optimal. Imposing the prior may lead to a more investment relevant
definition of return. The prior may or may not imply redefining risk. The definition of
the prior and the formulation of the optimization will also depend on investment
objectives.

IMPLIED RETURN EFFICIENT FRONTIER

The implied return procedure assumes that a given portfolio or index is efficient. The
prior is imposed on the optimization by solving for the “implied” returns given the
efficient index and the sample covariance matrix. The procedure can be described as
“backward” optimization and is given in Fisher (1975) and Sharpe (1974). The implied
return efficient frontier can be computed based on the implied returns and the given
covariance matrix. The implied returns are interpretable as return premiums. Note that the
implied return procedure leaves risk unchanged. By imposing the prior, the optimization
has more investment relevant information to define optimal asset allocations. As with all
benchmark methods, an optimization with additional reliable information is less likely to
be unstable and reflect statistical estimate errors, and more likely to provide investment
meaningful results.

The procedure requires the identification of an efficient portfolio. One natural approach
is to assume that the manager’s benchmark index is mean-variance efficient. For
practical purposes, a broad based market index may be sufficiently representative of
investor interest to be assumed approximately mean-variance efficient. Alternatively, for
active managers, an index may be efficient by definition since it is the benchmark used
for performance evaluation and for defining (active) risk and return.

In Black and Litterman (1992), the primary motivation for the procedure is that the
efficiency of the prior portfolio or index is a necessary condition for the optimization to
be well defined. It is also of interest to note that the implied return procedure can be
motivated from a more practical point of view, Historical average returns are highly
period dependent and unstable when compared to covariance estimates. Mismatches
between the relative reliability of input estimates can be a significant source of the
instability of the optimization process (Michaud 1989a). The backward optimization
procedure formulates return estimates that are consistent with the information level of the
sample covariance matrix.

Figure 7 illustrates the result of this procedure for the data in Figure 3. Note that the
index portfolio is now on the efficient frontier. It is, by construction, the maximum
Sharpe ratio portfolio, as indicated by the tangent line drawn from the origin. Comparing
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the results with Figure 3 shows that the implied return procedure fundamentally alters the
relative relationship of many assets and portfolios with respect to each other and to the
efficient portfolio set.

The implied return efficient frontier in Figure 7 has unintuitive investment characteristics.
The estimated implied returns range from 0% to 50%, which are inconsistent with the
scale of the standard deviation of monthly returns on the horizontal axis. However,
implied returns are unique up to a linear transformation. Consequently, they can be
linearly rescaled to be formally consistent with monthly data without changing the
composition of the efficient frontier or relative relationships. In Figure 8, the implied
returns are linearly scaled so that the maximum and minimum values are the same as the
sample average monthly retum premiums. Rescaling is a convenience that allows useful
comparisons with risk estimates and trading costs.

Figure 9 presents an estimate of the statistical equivalence region based on the scaled
implied returns. The results can be directly compared to Figure 4. As can be seen from
inspection, the impact of the implied return procedure is to make the statistical
equivalence region more compact and more inclusive. If we assume that assets are, by
themselves, unlikely to be efficient, the implied return procedure appears to have little
power to reject mean-variance efﬁmency Consequently, the implied return efficient
frontier may not often be the framework of choice for analyzmg the efficiency of the total
return and risk of portfolios. x\ ‘ s
Vot ,

MIXED ESTIMATION AND ACTIVE RETURN FORECASTS

As with all benchmark procedures, the implied return efficient frontier provides a useful
framework for including views of active return. This is because, in the absence of an
active return forecast, the optimal portfolio is the index. What remains is to specify a
procedure for rigorously integrating active views into an asset allocation.

In many cases, managers simply add their active return forecasts historical returns. The
limitations of this naive procedure are substantial. In many cases, active forecasts are not
equally reliable. In addition, the weighting given to historical data relative to the
forecasts should be carefully considered. Given our discussions on the instability of
mean-variance optimization, it would be surprising that the naive procedure is stable and
reliable and provides consistent superior investment performance.

A rigorous procedure for mixing forecast views and uncertainty with historical data in the
context of linear regression is given in Theil (1971). Black and Litterman (1992) provide
a slightly revised formula for mean-variance optimization. The data in Table 2 illustrates
the mixed estimation procedure for the historical data in Figure 3. The first line in Table
2 presents an analyst’s forecasts of monthly index excess return or alpha: 0.2% for U. S.
equities, 0.1% for France and -0.2% for Japan. The scaled implied return premiums from
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Figure 8 are given in line two. The analyst’s forecast alpha standard error is given in the
third line. The resuiting Theil-Black-Litterman mixed estimate excess returns are given
in line four.

Table 2
Mixed Estimation Excess Returns
Based on Prior Monthly Alphas, Scaled Implied Returns, Std Errors (%)
U.S. U.S. Euro Canada France Germany Japan U.K.
Stocks Bonds Bonds Stocks  Stocks Stocks Stocks  Stocks

Alpha 02 0 0 0 0.1 0 -0.2 0
Implied 046 008 006  0.57 0.71 0.62 147 072
Std.Er. 01 01 0l 0.1 0.1 0.1 0.1 0.1
Mixed 006 0 0 0.03 0.07 0 014 0

Figure 10 illustrates how the mean-variance efficient frontier changes based on the mixed
estimation data in Table 2 and the implied return efficient frontier in Figure 8. The “o”
indicates the Figure 8 efficient frontier and asset risk and retumn estimates; the “+”
denotes the mixed estimate frontier and asset estimates based on Table 2. The results
show that the right arm of the mixed estimate efficient frontier rotates in a southeast
direction about the index to accommodate the changes in expected return premiums.
Since the index-weighted sum of active returns must be zero, the index is a fixed efficient
point. ;
It should be noted that the mixed estimation procedure described in Table 2 and Figure 8
is not a particularly robust” Small changes in assumptions can lead to significantly
different optimal solutions. The instability may be due in part to the fact that the implied
return procedure does not change the definition of risk. In many cases the impact of the
value of parameters required in Theil-Black-Litterman mixed estimation are difficult to

anticipate and requirg considerable care if useful solutions are to result. Tle tnrbnl 0
ad e 'R Crf o sl Lot o G % Jfet vt bufft’ ~.A‘M,
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INDEX-RELATIVE EFFICIENT FRONTIER

For active asset management, index-relative optimization may be a valuable alternative to
the implied return framework. In this case, the no active risk portfolio is defined as the
index or benchmark. The efficiency of the index is imbedded in the optimization process
by defining the index as a negative asset and estimating optimization parameters from the
residual or index-relative returns for each asset in each time period.

Unlike implied return efficiency, index-relative optimization redefines the notion of both
return and risk. Index-relative also requires estimating the risk of an asset in a different
manner. If an asset has a 30% weight in the benchmark, an asset allocation consisting of
solely the asset implies a 70% active weight with respect to the index. Accordingly,
some convention must be used to allocate the 70% underweight in the remaining assets
when computing individual asset returns and risk. The natural approach is to use the
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negative of the index weights, which sum precisely to -70%, which is the convention in
this report. The optimization procedure must also be defined to reflect such
considerations.

Figure 11 illustrates the index-relative efficient frontier and asset returns and risk for the
data in Figures 3 or 1 and the definition of the index in Table 1. Comparing Figure 11 to
Figures 1 or 3 and 8 illustrates the significant differences between the three optimization
frameworks. In particular, Figure 11 indicates that many assets and reference portfolios
may be relatively less active risk-return efficient than return premium or implied return
efficient.

The statistical equivalence region in Figure 12 when compared to Figure 4 and 9 further
illustrates the significant differences between the three approaches to asset allocation. In
the case of index-relative return, the statistical equivalence region is more compact than
in Figure 4 and less inclusive than in Figure 4 or 9. In particular, note that, except for the
index, which is at the zero risk and return point, and Japan, the highest return point, no
other portfolio or asset class is within the estimated statistical equivalence region. The
results suggest that the index-relative efficient frontier equivalence region may have more
power to reject the lack of efficiency in portfolios and assets than the implied refurn or
return premium efficient frontiers. Figure 13 further illustrates the variability inherent in
index-relative optimization. The increased volatility of the efficient frontiers when
compared to Figure 12 indicates the significant reduction in the power of the procedure
when smaller samples sizes are employed.

Finally, it should be noted that the mixed estimation procedure can be applied to the
Figure 11 index-relative efficient frontier in the same way that it was with implied
returns. This may be a very natural framework for making active asset allocation
decisions. One key mixed estimation decision is the appropriate balance of historical
with forecast active risk and return information.

ECONOMIC LIABILITY EFFICIENT FRONTIER

An alternative framework to the implied return efficient frontier for defining an optimal
investment policy is benchmark optimization based on economic liabilities. Institutional
investors, such as corporate pension plan sponsors and endowment fund trustees, are -
often interested in defining an optimal long-term investment policy. This is because
investment policy is often considered the single most important investment decision. The
investment objective in this case is not to beat an index but to best allocate assets in the
light of long-term funding of liabilities. '

Economic liability optimization is, in concept, quite simple (Michaud 1989¢c). It consists
of defining the benchmark in terms of a model of the economic (non-actuarial) risk and
return characteristics of fund liabilities. The benchmark liability may be a function of the
returns of various financial assets and other economic and financial factors in each time
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period. As in the case of index-relative returns, the economic liability is introduced into
the optimization as a negative asset and liability-relative returns are used to compute
optimization input parameters,

The success of the economic liability optimization depends critically on defining an
economically relevant model of fund liabilities. The primary concern is to capture how
assets and liabilities interact and change dynamically in time. The key to the model
building process is a sufficiently comprehensive understanding of the economic risk
characteristics of the liabilities.

Endowment fund investment policy can provide a simple example of the economic
liability procedure. An important endowment funding objective may be to maintain a
stable level of purchasing power over time. One simple benchmark approach is to model
the liability with the inflation rate as a convenient surrogate for changes in purchasing
power. An economic liability efficient frontier provides optimal asset allocations for
meeting the funding objective.

For defined benefit pension plans, the liability modeling process is likely to be more
complex. One popular approach is to treat pension liabilities as interest rate sensitive.
This is because the accrued or plan termination liabilities have essentially the same
financial characteristics as a suitably defined portfolio of bonds. However, for an
ongoing firm, plan termination liabilities do not include the valuation of all promised
benefits. The present value of all current and future promised benefits, the “total actuarial
liability”, includes the additional component of future promised but unvested benefits.
These additional “variable” liabilities can be substantial: For a typical final average pay
plan, the size of promised benefits has been estimated at roughly 70% of termination
liabilities (see Michaud, 1989b).

If plan termination is not a significant consideration, total pension liability may be the
primary funding objective. Variable liabilities may have sharply different economic
characteristics from vested liabilities. In particular, variable liabilities are not always
interest rate sensitive. Variable liabilities consist of unvested pension benefits that
depend on withdrawal rates, final average pay and other variables. Their risk
characteristics depend on the business risks of the firm, corporate objectives, and other
considerations, many of which may not be related to interest rate risks. Michaud (1989b)
gives an example where variable pension liabilities may be highly correlated with equity
market returns. Modeling pension liabilities with equities can have a fundamental impact
on the asset allocation process. In particular, a well diversified equity portfolio may be
the low risk asset allocation of choice for funding variable liabilities.

As a very simple example of the benchmark liability procedure for defined benefit
pension plans, assume that a firm’s total liability consists of 60% plan termifation
liabilities and 40% variable liabilitics and that the plan is fully funded.* In addition,
assume that plan termination liabilities can be modeled with a portfolio of government
and corporate bonds and variables liabilities are highly correlated with U, S. equities.
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Figure 14 illustrates the result of using this simple model of pension economic liability.’
These results can be compared to those in Figures 3 and 7. While it is not surprising that
U. 5. stocks and bonds are closer to the efficient frontier, it is less anticipatable that asset
classes like French and U. K. equities are also relatively closer to the efficient frontier.

Figure 15 estimates the variability of the economic liability efficient frontier. Comparing
the statistical equivalence region to Figure 4 suggests that the power of the procedure is
no less and may be more relevant to the objective of defining investment policy in the
context of the assumed risk characteristics of the liabilities.

As a practical matter, the mixed estimation procedure is likely to be important in
developing the economic liability efficient frontier. This is because, few investment
policy studies will want to consider only historical data in developing a recommended
policy. The “active” views may more accurately reflect adjustments to long-term
historical data that may be indicative of relatively permanent changes in the underlying
economy and market structure. In this case, mixed estimation is an appropriate procedure
for modifying the long-term historical data.

STATISTICAL INFERENCE AND CONSTRAINED LINEAR REGRESSION

It is of interest to observe that mean-vanance optimization is equivalent to a suitably
defined constrained linear regression.® Intuitively, both procedures have the same
constraints and variance. Except for the definition of the dependent variable, the mean-
variance optimization equivalent regression is a stochastic independent variable
constrained regression, The variability of the estimation process comes solely from the
stochastic character of the independent variables.

The equivalence relationship can provide a fresh perspective on linear regression and
mean-variance optimization. For example, the instability associated with mean-variance
optimization is inherited by the stochastic constrained linear regression procedure.
However, in general, the estimation of a constrained linear regression with a non-
stochastic dependent variable has less variability than a corresponding unconstrained
regression with a stochastic dependent variable. Consequently, the instability of mean-
variance optimization is of a lower order than stochastic independent variable regression
estimation, all other things the same.

The constrained linear regression can also shed light on the mean-variance optimization.
Many linear regression statistics can be computed and may be useful for inference. In
particular, under reasonable assumptions, the usual test for the value of coefficients has a
t-distribution with N-K+q degrees of freedom, where N is the number of sample periods,
K is the number of variables and q=2, the number of constraints. The results may be used
for a better understanding of an optimized portfolio and may serve as the basis for
heuristics in guiding the construction of candidate optimal portfolios,
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The following data in Table 3 illustrates these concepts with an analy51s of the 9th and

rt\} 12th least risky efficient portfolios in Figure 3 based on the t-statistics of the

!

corresponding mean-variance equivalent constrained linear regression. The efficient
allocations for the indicated efficient portfolios are given in lines one and five in the
table. For these portfolios, the sign constrained efficient frontier solutions did not include
the three assets: U. S. bonds, Canadian and German stocks. From Figure 3 note that the
current portfolio and equal weighted portfolio are close to the 9th efficient portfolio,

F?;-?
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while the index portfolio is close to the 12th efficient portfolio. Line two displays the t-
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'& statistics for the 9th efficient portfolio. Line three and four display the t-statistics of the
. coefficients of the 9th portfolio relative to either the current or equal weighted portfolio
i ¢ ) weights, Line six provides the t-statistics for the 12th portfolio relative to the index.
M., l‘ \ Table 3
3 \} & Mean-Variance Efficient Portfolio T-Statistics
43 \c = Return Premium Efficient Frontier Portfolios (9th and 12th)

U.8. U.S8. Euwo Canada France Gemmany Japan U. K.
Stocks Bonds Bonds Stocks  Stocks Stocks Stocks  Stocks

Eff-9th % 15 0 35 0 15 0 25 10
t-stat 2.0 0 7.0 0 32 0 9.7 3.4
t-current -14 0 6.0 0 1.0 0 1.4 -0.6
t-equal 0.3 0 4.5 0 0.4 0 4.5 0.1
Eff-12th% 20 0 10 0 20 0 30 20
t-index -0.9 0 1.5 0 1.8 0 -1.0 14

Figure 3 indicates that the structure of the current and equal weighted portfolios should be
similar to the 9th efficient portfolio, the index similar to the 12th portfolio. These
hypotheses are largely borne out in the t-statistics of the coefficients in Table 3. In
particular, only one asset weight, Euro bonds, is significantly different from the current
portfolio; the Euro bond and Japanese stock weight are the only ones significantly
different from the equal weighted portfolio; no asset weight in the 12th portfolio is
significantly different from the index portfolio. The t-statistics are useful as portfolio
construction heuristics, guiding the analyst to the asset weights with the most impact on
mean-variance efficiency. It should be noted that the proper interpretation of a t-statistic
in the context of a mean-variance optimization is properly interpretable only with respect
to a multivariate context. For example, a statistically significant t-value implies the
significance of the portfolio weight given that the other (N-1) assets are present. While t-
statistic analysis may be useful for understanding the micro structure of portfolio
efficiency, F-tests may be useful for estimating the overall efficiency of a given portfolio.

SUMMARY AND CONCLUSION

The most serious limitation of mean-variance optimization as a practical tool of
investment management is probably the statistical instability of the process. Because a
mean-variance optimizer will often maximize the use of statistical errors in parameter
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estimates, a mean-variance optimized asset allocation may often be investment irrelevant.
A consideration of the statistical characteristics of the mean-variance optimization
process leads to a number of procedures for dealing with optimization stability.

Fundamentally, mean-variance optimization is a forecasting process and optimization
errors the result of over-fitting data. The in-sample instability and out-of-sample
inefficiency of mean--variance optimizations are analogous to the better known behavior
of stepwise regression and other in-sample optimized linear regression forecasts. The
forecast errors created are not indicative of any fundamental flaw in mean-variance
optimization but the manner that the procedure has been applied.

A “statistical equivalence” region describes the variability inherent in mean-variance
optimization and leads to an alternative approach to optimal asset allocation: as a
statistical test of the efficiency of candidate portfolios. In many practical investment
situations, this is all that is required from mean-variance efficiency analysis. This
“statistical” asset allocation approach, that includes techniques for enhancing input
estimation and investment relevance, provides a practical, more reliable and effective
framework for defining optimal asset allocations.

FOOTNOTES

! The literature on the geometric mean portfolio selection criteria is extensive. It includes
Merton and Samuelson (1974) and Samuelson and Merton (1974) on the one hand and
Markowitz (1959, ch. 6, 1977), Latane (1959), Hakansson (1971a, 1971b, 1977, 1979),
Hakansson and Miller (1975) on the other. Michaud (1981) attempts to summarize the
issues from the point of view of a practitioner. The extensive references in the cited
papers can be used to further explore the issues.

% The concept of the “statistical equivalent” region, discussed in Michaud (1989), has
important antecedents in the work of Jobson and Korkie (1981). Also, see Jobson (1991)
and Jorion (1992).

3 Jobson (1994) proposes an alternative bayesian estimator for the optimization

parameters that has many attractive properties.

4 See Michaud 1989c for a benchmark optimization procedure when plans are not fully
funded.

3 It should be emphasized that the model presented is only a very simple approximation to
economic {as opposed to actuarial) pension liability modeling and is not relevant for
many firms. To be successful, the process will often require extensive analysis of the
business risks of the firm, corporate objectives and other financial, economic, as well as
actuarial, considerations.
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% Assume a sum to one coefficient constrained mean-variance optimized portfolio with a
given mean return without positivity constraints (as noted below, this condition can be
removed) on the coefficients. Define the following constrained linear regression using
the same sample data as the independent variables: a) sum to one coefficient constraint;
b) mean return constraint; ¢) dependent variable equal to zero; d) sample data with the
mean of the independent variables removed. The constrained linear regression leads to
the same VEl’pes for the coefficients as the mean-variance optimization and conversely.
Note that gondition of non-positivity constraints in the mean-variance optimization can be
removed. en positivity, constramts are included in the optimization, the net effect is
that some,variables T t may be excluded from the mean-variance efficient
set for a given mean. By defining the constrained linear regression so that only the
variables in the efficient set at a point are used, all previous results apply. The regression
data in Table 3 were computed using this result.

7 The properties for inference include the standard linear regression assumptions
generalized for stochastic multivariate normal variables and constrained linear regression
(Jobson and Korkie 1985; see also Theil 1971, ch. 6, Green 1990, ch. 10).
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FIGURE 1
CLASSICAL MEAN-VARIANCE EFFICIENT FRONTIER
January 13978-June 1994 Monthly Data
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FIGURE 2

MEAN-VARIANCE EFFICIENT FRONTIER AND PORTFOLIO ANALYSIS

January 1978-June 1994 Monthly Data

3 I ] 1 1 )

2.5

1 + *can

0.5

‘ger

-fra

*uk

O | X 1 ! ! 1
0 1 2 3 4 S 6

monthty return st. dev.

10




STATISTICAL ASSET ALLOCATION
Richard O. Michaud

FIGURE 3
RETURN PREMIUM EFFICIENT FRONTIER
January 1978-June 1994 Monthly Data
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FIGURE 4
STATISTICAL EQUIVALENCE EFFICIENT FRONTIERS
100 SIMULATIONS, 198 TIME PERIODS
January 1978-June 1994 Monthly Data
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FIGURE 5
STATISTICAL EQUIVALENCE EFFICIENT FRONTIERS

100 SIMOLATIONS, 60 TIME PERIODS
January 1978-June 1994 Monthly Data
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FIGURE §
BAYES-STEIN ADJUSTED EFFICIENT STATISTICAL FRONTIERS
100 SIMULATIONS, 198 TIME PERIODS
January 1978-June 1594 Monthly Data
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FIGURE 7
IMPLIED RETURN PREMIUM EFFICIENT FRONTIER
January 1378-June 1994 Monthly Data
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FIGURE 8

SCALED IMPLIED RETURN PREMIUM EFFICIENT FRONTIER

January 1378-June 1594 Monthly Data

1.5 ] | L 1 I 1 . 1

monthly return premium st. dev.

+
+
E +
1F F :
+
ind
fra  -uk
‘cur ~ger
i *equ -can
0.5F .
! -us
| T
+
+
+ .
teyr *bnd
0 : 1 | 1 i [ b | L
0 1 2 3 4 5 6 7 8

10




STATISICAL ASSET ALLOCATION
Richard O. Michaud

FIGURE 9
SCALED IMPLIED RETURNS EFFICIENT STATISTICAL FRONTIERS
100 SIMULATIONS, 198 TIME PERIODS
January 1978-June 1994 Monthly Data
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FIGURE 10
MIXED (+) AND SCALED (0) IMPLIED RETURN EFFICIENT FRONTIER
January 1978-June 19594 Monthly Data
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FIGURE 11
INDEX-RELATIVE EFFICIENT FRONTIER
January 1978-June 18%4 Monthly Data
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FIGURE 12
INDEX-RELATIVE EFFICIENT STATISTICAL FRONTIERS
100 SIMULATIONS, 198 TIME PERIODS
January 1978-June 1994 Monthly Data

i 1 1 i i

@]
W -

(&
)
T

o
»
7

=)
N
-

O
N
N9

O
5
T
c
7]

‘ger

average monthly index-relative return
O

0.8f "eghd

-4 ' : ' . : ' -
-1 0 1 2 3 4 5 8

monthiy iﬁdex—retative return st. dev.




STATISTICAL ASSET ALLOCATION
Richard O. Michaud

FIGURE 13

INDEX-RELATIVE EFFICIENT STATISTICAL FRONTIERS

100 SIMULATIONS, 60 TIME PERIODS

January 1878-June 1994 Monthly Data

1. 1 ' + LD 3

o
[01]
T

o o
o (9)]
T T T

o
[
¥

average monthly index-relative relurn
(o]
T

0.2
|
|
0.4r
! * .
-0.6} *can
-0.8F "€8hd
_1 ! I } 1 ] {
-1 0 1 2 3 4 5

monthly index-relative return st. dev.
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FIGURE 14
BENCHMARR LIABILITY EFFICIENT FRONTIER
January 1978-June 1994 Monthly Data
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FIGURE 15

BENCEMARK LIABILITY EFFICIENT STATISTICAL FRONTIERS
100 SIMULATIONS, 158 TIME PERIODS
January 1978-June 1994 Monthly D_ata.
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