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Stock value is dependent on the market environment. Yet many stock valuation models have
fixed, hidden biases that implicitly represent a forecast market scenario and prevent the
model from being responsive to top-down investment information. The popular dividend
discount model (DDM) is a case in point: The DDM provides a framework for efficient
management of bottom-up investment information, but it has inherent biases that cause it
consistently to favor high-yield, low price-earnings ratio stocks.

An approximate mathematical decomposition of the information coefficient of standard
DDM wvaluations confirms the existence of the yield bias and reveals a second bias—a
negative correlation between the model’s forecast components—that represents an internal
inconsistency and affects performance. The analysis shows, however, that the biases in the
model are independent of the underlying discounted cash flow framework. This independence
provides an opportunity to create a scenario-dependent dividend discount model, while
maintaining reliance on near-term analysts’ forecasts for relative valuation.

A scenario-dependent generalization of the DDM—the “tonditional valuation” or CV-
DDM—controls the observed biases. CV-DDM valuations may be explicitly conditioned to
reflect an institution’s investment philosophy and available top-down investment informa-
tion. The enhanced technology thus eliminates self-defeating inconsistencies, providing a
tool for bridging the gap between top-down investment information and bottom-up analysts’
forecasts. A more realistic return structure may also lead to an increase in the level of
information that can be derived from analysts’ forecasts.

VERY WELL MANAGED investment or-
Eganization has an investment philosophy

and employs a valuation model. When
the philosophy and model are implicitly, rather
than explicitly, stated, the result may be ineffi-
ciencies in the control of the investment process
and the use of investment information, incon-
sistencies in security selection, and underper-
formance.

The advantages of an explicit, or quantitative,
valuation model may be substantial. A quantita-
tive model requires the definition of mutually
agreed upon relevant inputs that are systemati-
cally collected and used in a timely fashion. The

output of the process provides unambiguous
evaluations of value. Such an investment proc-
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ess may be characterized by a degree of control,
consistency, accountability and risk-sharing not
normally available in more traditional invest-
ment processes.

The standard dividend discount model
(DDM) is a price-sensitive, relative valuation
that generates an explicit return forecast.' Based
on a modern, or Graham and Dodd, view of
financial value, it is prospective, grounded in
fundamental analysis, and intrinsically related
to price. DDM return is defined as the internal
rate of return that equates the discounted
stream of derived forecast dividends to current
price. The DDM is thus a natural generalization
of the fixed-income yield-to-maturity concept
applied to the valuation of equity securities. It
has many attractive investment management
characteristics and is part of the investment
process of many major financial institutions.

Unfortunately, the standard DDM has severe
limitations as a stock selection tool. Specifically,
it is a “fixed bias”’ or ““fixed scenario” valuation
model. That is, it has known structural biases—
not primarily the result of analysts’ forecasts—
that make its valuation insensitive to changes in
an institution’s investment philosophy or the
market outlook. Such biases tend to limit any
valid application of the DDM for value-oriented
investors, long-term investment strategies, bear
market cycles or comparisons with other stock
valuation data.

A number of risk-adjustment methods may
be used to eliminate biases in DDM valuation.
Probably the simplest is to base security valua-
tion on residuals, or alphas, computed from
cross-sectional regressions of DDM returns
against dividend yield and beta.? The appropri-
ate objective, however is to control, rather than
eliminate, valuation bias. A given bias is not
necessarily inappropriate if the investor is
aware of it and it is consistent with his invest-
ment philosophy and information. However, if
a given bias is inappropriate for the stock uni-
verse being examined or the prevailing market
outlook, adjustment is appropriate.

This article examines two biases inherent in
the standard dividend discount model. Meth-
ods for controlling these biases are discussed
and tested. The results suggest that a signifi-
cantly enhanced, scenario-dependent general-
ization of the DDM avoids the problems of
internal biases and narrow applicability suffered
by models currently in widespread use in the
investment community.

1. Footnotes appear at end of article.

Two Biases

Empirical tests by Michaud and Davis have
indicated that the ex ante characteristics of the
standard DDM on a period-by-period basis -
strongly resemble a dividend yield or low price-
earnings ratio valuation.® This consistent tilt, or
anti-growth-stock bias, statistically explained
the performance of the model. Michaud and
Davis showed that the yield bias was a conse-
quence of arbitrary “default’” assumptions used
to complete the infinite stream of forecast divi-
dends. By defining the default assumptions so
that the valuations reflect a market or sector
outlook consistent with available top-down in-
formation, the DDM can be converted from a
fixed-bias model to one that is “scenario-depen-
dent.” Michaud and Davis introduced a simple
and convenient scaling method—the “struc-
tured,” or “conditional valuation” DDM (the
CV-DDM)—to control yield bias.

This article provides a theoretical explanation
for the observed yield bias. The discussion is
based on an approximate mathematical ““de-
composition” of the cross-sectional information
correlation (“information coefficient,” or “1C"")
of DDM forecasts with ex post total return. The
results indicate that the observed yield bias is
not an artifact of the time period being exam-
ined, but a characteristic of the model itself, and
that the CV-DDM scaling method provides a
reliable basis for the management of the ex post
yield-return relation in a DDM framework.

The decomposition also reveals the existence
of another ex ante bias in the standard DDM—a
large negative “component correlation” (CC)
that indicates the existence of an internal incon-
sistency in the structure of model forecasts. The
linear scale transformation used to control DDM
yield bias has no effect on CC bias. A significant
departure from the standard DDM format—a
new method called “horizon truncation”—is
introduced to manage the CC bias.*

Decomposing the DDM IC

The IC—the cross-sectional (simple) corre-
lation of standard DDM return (K) with ex post
total return (R)—is the statistic most commonly
used for evaluating the level of information in
return forecasts.” The appendix provides a deri-
vation of an approximate DDM IC decomposi-

tion.® For the standard DDM, the approxima-
tion is:

c(K,R) = —0.08 + 1.2¢(g,C) + 1.2¢(Y,R), (1)
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Table I Cross-Sectional Correlations (A data from 1973-81, B & C data from 1973-80)

73 74 75 ‘76 ‘77 78 79 ‘80 81 Avg. S.D.
o(y.R) 0.14 0.22 0.12 0.31 0.15 -0.28 -0.23 -0.35 0.38 0.05 0.27
‘ 0.19 0.40 0.33 0.46 -0.45 -0.29 -0.29 -0.15 0.01 0.36
o(Y,R) 0.17 0.30 0.20 0.38 0.21 -0.23 -0.19 -0.29 0.38 0.10 0.27
0.34 0.46 0.28 0.46 —0.42 -0.27 ~0.24 ~0.14 0.06 0.36
(g, Q) -0.31 -0.16 0.14 0.03 0.14 0.33 0.25 0.34 -0.22 0.06 0.24
-0.02 ~0.16 0.10 0.01 0.57 0.27 0.32 0.11 0.15 0.23
cy.g) -~0.65 —~0.57 -0.06 -0.67 -0.78 -0.81 -0.78 -0.76 -0.73 ~0.65 0.24
-0.60 -0.44 -0.46 ~0.57 -0.76 -0.85 -0.79 -0.74 -0.65 0.16
c(Y,C) 0.12 0.18 0.12 0.29 0.12 -0.31 ~0.26 -0.36 0.27 ~0.02 0.26
0.28 0.35 0.18 0.36 -0.48 -0.34 -0.30 -0.23 —0.02 0.35
c(y.Y) 0.96 0.66 0.80 0.91 0.93 0.95 0.95 0.96 0.97 0.90 0.10
0.86 0.93 0.88 0.91 0.93 0.89 0.94 0.97 0.91 0.04

Selected Time-Series Regressions Abs. Value: Avg/S.D.

o(Y,R) = 0.05 + 0.99¢(y,R) r = 0.99 c(g.C) = 0.21/0.10

= 0.03 + 0.99c(y,R) r = 0.99 = 0.20/0.19

«(Y,R) = 0.15 - 0.85c(g,C) r= —0.76 c(Y,R) = 0.26/0.08

= 0.27 - 1.42¢(g,C) r= -0.90 = 0.33/0.11

where c(g,C) is the correlation of forecast capital
appreciation (g) with actual capital appreciation
(C), and c(Y,R) is the correlation of ex post yield
(Y) with ex post total return (R).

Equation (1) shows that the relation of ex post
yield to return—c(Y,R)—is as prominent a fac-
tor in explaining the performance of standard
DDMs as the factor that represents the informa-
tion in analysts” forecasts—c(g,C). The data in
Table I, indicating that the two factors have
approximately the same magnitude, suggest
that the standard DDM is unlikely to show a
positive relation to return unless the ex post
yield-return relation is positive. The use of the
standard DDM as a forecasting tool, in other
words, represents a substantial bet on high-
dividend-yield stocks.

A general approximation for the CV-DDM
(derived in the appendix) is:

o(E,R) = [xV(1+x* — 1.3x)]
[—0.065 + c(g,C) + c(Y,R)/x], 2)

where c(E,R) is the correlation of CV-DDM
return (E) with ex post total return (R) and x is
the CV-DDM scale factor defined by the forecast
market line risk premium.’

Equation (2) describes how the CV-DDM scal-
ing method affects the performance of the mod-
el. The multiplicative factor—the first term on
the right-hand side of the equation—is approxi-
mately a constant for scale factors of interest.
Thus the scale factor in effect changes the de-
pendence of the performance of the DDM on
the ex post yield-return relation by a factor of 1/x.
The decomposition demonstrates the impor-

tance of the yield-return relation to model fore-
casting performance.

In the empirical studies of Michaud and Da-
vis, a “passive,” or “balanced,” CV-DDM was
defined in reference to a forecast 6 per cent
market line risk premium, which may represent
a “normal” yield-capital appreciation relation.
In this case, the value of x in Equation (2)
averaged about two. Consequently, a balanced
CV-DDM reduces the impact of the ¢(Y,R) term
on DDM performance by a factor of half, com-
pared with the standard DDM.

In order to test the accuracy of Equation (1), -
we performed time series multiple regressions
using c¢(K,R) as the dependent variable and
¢(g,C) and c(Y,R) as independent variables. The
data used were the annual cross-sectional corre-
lations observed for the A database of Michaud
and Davis over the nine-year period 1973-81
and the B and C databases (considered as one
database) over the eight-year period 1973-80.
As a test of Equation (2), balanced CV-DDM
cross-sectional correlations for the A and B&C
databases were regressed against c(g,C) and
c(Y,R). A scale factor of x equal to two was used
to evaluate the likely values of the parameters of
the decomposition Equation (2). The resulting
formula (derived in the appendix) is as follows:

(E',R) = —0.08 + 1.3¢(g,C) + 0.65(Y,R). (3)

Table II gives the partial regression coefficients,
t-statistics and adjusted R-squares for the stan-
dard and balanced DDM IC decompositions.
Except for the value of the constant, —0.07,
which is significant at the 0.1 level, the coeffi-
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Table Il Standard and Balanced DDM Multiple
Regression Coefficients, t-Statistics and
R-Squares (A data from 1973-81; B & C data
from 1973-80)

¢(L,R) a c(g.C) c(Y,R) R-Squared
Standard -0.1014.0 09174 1.11/10 0.94
—0.1425 1.74/6.6 1.36/8.2 0.91
Balanced -0.08/8.0 1.16/24 0.45/10 0.99
-0.072.0 1.3/7.4 0.49/4 4 0.92

cients are all statistically significant at the 0.05
level and are roughly consistent with expecta-
tions. In particular, the coefficient of <(Y,R) for
the balanced CV-DDM case is reduced by ap-
proximately half. The available time series data
consisted of no more than nine points, the
residual error may not be normally distributed,
and some of the ex post data used to derive the
approximations were not evaluated indepen-
dently from the regression test data; neverthe-
less the value of the corrected R-squares and the
level of significance of the F statistic (at the 0.1
per cent level or less) are impressive. The re-
gression analysis suggests that approximating
Equations (1) and (2) provide a reasonably reli-
able description of the forecasting characteris-
tics of the DDM, under the assumptions used.

The mathematical properties of Equation (2),
and tests of the accuracy of the appoximation,
provide evidence that the existence of yield bias
in the standard DDM and the reduction of yield
bias in the balanced CV-DDM using the scaling
technology are not characteristic of the time
period but of the model and method. The analy-
sis also suggests that a critical issue in the use of
the DDM is control of the model’s response
characteristics with respect to the ex post yield-
return relation.

A Second DDM Bias

A good mathematical model can be helpful,
not only in interpreting prior data, but in reveal-
ing characteristics of a process not otherwise
easily observable. The mathematical approxima-
tion of DDM IC given by Equation (2) indicates
the existence of a second ex ante bias and inter-
nal inconsistency in the structure of DDM re-
turns that also affects forecasting performance.

The presence of a negative constant term in
Equation (2) leads to a deeper understanding of
the forecasting behavior of standard DDMs. The
constant term in Equation (2) (derived in the
appendix) is:

M = c(g,y). oviog, @)

which was approximated as —0.065.

The approximation resulted, in part, from the
observation that the value of the ex ante compo-
nent correlation (CC) is of the order —0.65. This
high negative correlation is significantly differ-
ent from the corresponding ex post correlation
¢(Y,C), which, as the data in Table I show, has a
time series average value close to zero. Al-
though the value of the constant is not indepen-
dent of the other factors, formally, it seems
plausible that a DDM with a more realistic ex
ante structure with respect to the value of the
CC would have a smaller constant value in the
decomposition, which would lead to improved
performance.

The data in Table I show that <(Y,R) and
C(Y,C) always have the same sign, while corre-
sponding standard DDM correlations are al-
ways of opposite sign and generally much larg-
er in magnitude. The surprising inference is that
the ex ante structure of the standard DDM
returns was not consistent with the structure of
ex post returns over any time period. An unreal-
istic and financially inconsistent ex anfe return
structure may explain the difficulty many secu-
rity analysts experience when using the stan-
dard model to forecast returns.

The CC bias is not equivalent to the DDM
yield bias. This is evident from the fact that the
CV-DDM scaling method does not alter the
value of the CC. Consequently, the ex ante
values of the CC and yield bias may be separate-
ly controllable.

The likely impact of the CC bias on the
performance of the DDM can be explained with
a simple principle: To the extent that the rele-
vant structure of ex ante returns is consistent
with ex post returns, DDM IC should increase. A
more realistic ex ante return structure may also
elicit input forecasts with higher levels of infor-
mation, inasmuch as anecdotal evidence sug-
gests that analysts change their input forecasts
when presented with a DDM with a more
realistic ex ante structure.

Another issue associated with the CC bias is
the negative collinearity of the two explanatory
factors in the approximation. The standard
DDM CC value implies that half the variance of
g is explainable by the variance of y (or, under
the assumptions of the appendix, Y). This
means that c(g,C) is negatively correlated, or
collinear, with <(Y,R); linear regressions given
in Table [ confirm the hypothesis and the extent
of the relation. Consequently, much of the
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value of c(g,C) is related to the factor c(Y,R).
While collinearity may often affect the estima-
tion efficiency of the regression parameters, the
results in Table II do not indicate it is a problem
in this instance. Collinearity may induce insta-
bility in the estimates of the coefficients, but it
does not appear to affect the predictive power of
the decomposition. '

The CC bias in the standard DDM represents
an internal inconsistency with respect to the
yield bias in the model. This is because a nega-
tive ex post component correlation is associated
with a market environment that is not yield-
oriented. In contrast to a standard DDM, we
will define a yield CV-DDM to have a “more
than normal” positive correlation with yield and
a positive component correlation, and a growth
CV-DDM to have negative yield-return and
component correlations. Additionally, a neu-
tral, or balanced, CV-DDM will be defined in
terms of a “‘normal”’ correlation with yield and a
statistically insignificant (CC-neutral) compo-
nent correlation.

Some Properties of CV-DDM Valuation

It is useful to begin an analysis of some
general properties of the CV-DDM with an
approximation of the DDM IC that assumes
nothing about the characteristics of a specific
DDM. This is important because alternative CC-
value DDMs are unlikely to have the same ex
ante structure as the standard DDM. Equation
(5) gives such an approximation:

¢(E,R) = (xa,/o%) [0.1c(g,y) + c(g.C)
+ o(Y,R)(0y,/x0y)] 5)
where ‘

o = V(g + (x aef + 2xa,0,c(g,y)).

Some interesting characteristics of CV-DDMs
may be found using Equation (5) in conjunction
with the correlation of E with y:

c(Ey) = [c(y.g) + oy/xap)l
V(1 + 0,/(x0,) + 20,c(g,y)xae].  (6)
Note that a CC-neutral DDM is always posi-
tively correlated with ex ante dividend yield.
This result demonstrates that a CV-DDM risk-
adjusted return may be fundamentally different
from one based on residuals, where the effect of
dividend yield is removed using regression
analysis.
A balanced, CC-neutral CV-DDM does not
imply dividend yield neutrality, but rather some

positive or normal balance between yield and
capital appreciation. In this regard, the ex ante
properties of dividend yield residual valuations
make little financial sense, because a well-
formed valuation model should always prefer
more dividend yield to less, all other things
being equal. It is when further information
concerning the ex post characteristics of the
yield-return relation can be assumed known, as
may be the case when the growth CV-DDM is
used, that the yield-return relation may be val-
idly non-positive, ex ante.

To understand some of the properties of the
CV-DDM, consider what happens as the scale
parameter, x, varies. As x approaches zero (x —
0), the following will occur:

c(Ey)—1,
c(E,R) = c(Y,R).
A value of x less than one represents a cross-
sectional underweighting of the importance of
forecast capital appreciation relative to dividend
yield. Consequently, at the limit, the correlation
of forecast returns with yield should be one and
the correlation with ex post returns should de-
pend totally on the ex post relation of yield to
return. As the results confirm, the CV-DDM has
these properties.
Now consider the case where x approaches
infinity (x — ). In this case:

c(Ey) = c(y,g),

¢(E,R) — 0.1c(y,g) + <(g,C).
A large value of x represents a cross-sectional
overweighting of forecast appreciation relative
to yield. Such a scenario may be appropriate if
we anticipate that dividend yield will be irrele-
vant or negatively related to return. As this case
shows, the value of the CC plays an important
role in both the yield and return correlation.
With a “growth scenario” outlook, if the value
of the CC is negative, the correlation of the CV-
DDM with yield will be negative. With respect
to the DDM IC, a negative CC value has a
negative impact on the value of the first term;
this may be offset, however, by a positive sec-
ond term because of the induced dependency
caused by the collinearity with —c(Y,R) and the
magnitude of the anticipated negative ex post
yield-return relation.

One final observation may be of interest. As
Equation (5) shows, the ratio o,/ xo, behaves
similarly to x in Equation (2) in terms of altering
the importance of capital appreciation relative to
yield. Because alternative CC-value DDMs re-
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Table IIT  Cross-Sectional Component Correlations for
Alternative DDM Assumptions and Formats

Additive Transition Period Length
(D data from 79/06)

0 10 20 40
-0.73 -0.67 -0.63
Additive Growth Factor

(D data from 79/06)

0 5 10 20
-0.73 -0.76 ~0.77 -0.39
Truncation Period Analysis
(D data average and standard deviation)

200 50 25 15
-0.57 -0.42 -0.17 0.10
0.04 0.04 0.05 0.06
Final-Price Truncation Period Analysis
(D data average and standard deviation)
200 50 25 15 10
-0.57 -0.48 -0.33 -0.12 0.09
0.04 0.04 0.04 0.06 0.14

quire a different discounted cash flow frame-
work from the standard DDM, the value of the
ratio of the ex ante component standard devi-
ations may be different from that of the stan-
dard model. One consequence is that the value
of x associated with scenarios for the new CV-
DDMs may be different.

A New Method for Controlling Bias

We examined alternative assumptions or for-
mats of DDM return construction to find a
practical method for controlling the value of the
CC. The analysis is based solely on the D
database of Michaud and Davis. There are six
data sets in the D database, but only two have
nonoverlapping annual returns. Consequently,
our objective is to search for guidelines, rather
than proofs of statistical significance.

The first two panels of Table III report the
results of two sets of model construction experi-
ments on the first of the six D data sets. The first
set of experiments examines the effect of in-
creasing the length of the second, or “transi-
tion,” stage on the value of the CC. As the data
in the first panel indicate, the CC decreases
from —0.73 to —0.60 when the transition period
is lengthened by 40 periods (years).

The second set of experiments (panel 2) in-
creased the terminal, or third-stage, earnings
growth assumption of 8 per cent used to com-
plete the infinite stream of anticipated divi-
dends, holding the payout ratio constant at 50
per cent. As indicated, raising the earnings
growth rate by 20 per cent reduced the CC from
—-0.73 to —0.41.

Although these experiments in changing
standardized assumptions in the standard DDM
are far from exhaustive, they are nevertheless
typical and indicate the strength of the negative
CC bias in the traditional DDM framework.
Unless one is willing to alter model assumptions
severely—in general, far beyond plausibility—
this approach seems unpromising. Substantially
different forms of the basic discounted cash flow
format appear to be required to control the
value of the CC.

We considered two significantly different al-
ternative DDM formats—‘truncated’” and “fi-
nal-price” models. In the pure truncated model,
the valuation is based solely on discounted
forecast dividends over some prespecified finite
horizon. Alternatively, a final price may be
estimated for the end of a prespecified horizon
and included in the computation of forecast
return. :

Pure truncation was used as a method of last
resort in order to understand the source of the
CC bias in the standard DDM. However, a
truncated final-price DDM is a serious and valid
alternative to the traditional process of estimat-
Ing an infinite stream of future dividends. Even
variable truncation, which is related to the CC
value, can be given a plausible finandial inter-
pretation.

A market scenario where yield is positively
related to return may be associated with eco-
nomic uncertainty and preference for current
over prospective return. As a consequence, the
length of an investment horizon with valid
forecast information is likely to be short. Alter-
natively, an economy where growth or capital
appreciation potential is valued is likely to be
one with less economic uncertainty, where the
length of the investment horizon with valid
forecast information is longer. Such consider-
ations can be directly reflected in the length of
the time period used in the truncation process,
on a stock universe or sector basis.

The third panel of Table III gives the results
from applying the pure truncation method to
the DDM CC. The data refer to the time series
average and standard deviation of the cross-
sectional CCs for the six D databases truncated
at various specified time horizons. When the
model is truncated after 15 periods, the CC
becomes insignificant. The truncation process
appears to be a viable method for controlling the
value of the CC.

The analysis of (truncated) final-price DDMs
requires a method of computing final price. In
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Figure A Comparisons of Forecast Market Lines,
Standard vs. “Default” CV-DDMs

g Growth, CC<o
Prem, = 15%

CV-DDM
‘ Balanced, CC =0
/ b Prem. = 6%
Return s Standard, CC << 0
Prem. = 0
RO y Yield, CC>0
Prem. = 0%

Beta -->

the fourth panel of Table III, final price (FP) is
estimated by dividing forecast dividends in the
final period (Dn) by “normal” dividend yield:

FP = Dn/(normal long-term yield).  (7)

The normal long-term yield assumed in the
analysis was 5 per cent.

As the data show, final-price DDMs, truncat-
ed at the 15th or 10th year, can reduce the CC to
statistical insignificance as well as change the
sign of the correlation. The data imply that final
price DDMs deserve consideration as a plausi-
ble and conceptually attractive alternative dis-
counted cash flow framework that allows signif-
icant control of the CC over a wide range of
values. Horizon truncation with a final price
estimate represents an important new tool for
conditioning the ex ante structure of DDMs
consistent with the anticipated ex post structure
of returns.

Figure A graphically illustrates the yield, bal-
anced and growth CV-DDMs and compares
them with the standard DDM. As indicated, the
CV-DDMs are defined to reflect forecast market
premiums of zero, 6 per cent and 15 per cent, an
intercept that reflects the forecast risk-free rate
and a CC value consistent with the structure of
ex post returns. The three CV-DDM scenarios
are designed to span a reasonable spectrum of
“more than normal,” “long-term average” and

“less than normal” forecasts of the yield-return
relation. In contrast, the standard DDM gener-
ally has a nearly zero slope, a “much more than
normal” yield-return relation, an intercept
equal to the average value of returns (approxi-
mately 15 per cent if standard default assump-
tions are used) and a large negative CC value.

Although experiments to control the value of
the CC in a discounted cash flow valuation
model may be of interest, it is possible that the
technique is self-defeating, since g, hence fore-
cast return, will be redefined in the process. A
technique that controls the magnitude of the CC
may be a necessary, but is not a sufficient,
condition for reaching the potential of increased
DDM performance.

Tests of the Decomposition

Table IV presents a multiple regression analysis
in the same format as Table II for the untruncat-
ed (N = 200 periods, CC sttongly negative) and
truncated (N = 10 and 15 periods, CC neutral)
final-price DDM data for the D database. Given
the significant statistical limitations of the data-
base, the t-statistics in the multiple regression
analysis should not be used as valid tests of
statistical significance. Nevertheless, the results
are generally consistent with expectations of
Equations (2) and (5). In terms of the scaling
method, the results are similar to those in Table
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Table IV Multiple Regression Coefficients, t-Statistics

and R-Squares, Final Price DDM (D databasc)

Table V  Cross-Sectional Correlations, Final Price DDM
(D database)

¢(,R) a c(g.C) c(Y,R) R-Squared N = 200 15 10
Standard c(AEY,AR) -c(AK,AR)* 0.01/0.01 0.02/0.002 0.04/0.004
N =200 -0.19/5.0 1.70/7.7  1.38/4.7 0.92 o(AE,AR) -c(AK,AR)* 0.09/0.03 0.06/0.01  0.05/0.01
N= 15 -0063.3* 1.17/11 0.99/5.8 0.96 c(AEG,AR)-c(AK,AR)* 0.12/0.05 0.09/0.03  0.06/0.007
N= 10 -0010.7% 1.01/12 0.76/5.2 0.97
Yield . <(AK,y) 0.37/0.05 0.54/0.03  0.57/0.03
N =100 -0.19/43 1.79/6.0  1.34/3.3 0.87 c(AEy) —-0.09/0.08 0.22/0.04  0.30/0.04
Balanced o(Y,R)* —0.12/0.04
N =200 -0.125.6 1.38/9.9  0.46/2.4" 0.80 o«Y,C) -0.18/0.05
N = 15 -0.03/4.1 1.12/28 0.41/6.4 0.99
N = 10 0.01/1.8*  1.04/28 0.24/3.8 0.99 ] ]

Growth * Omits non-negative ¢(Y,R) time period.

N =200 -0.08/7.2 1.18/15 0.15/1.4* 0.98

N= 15 -00253 10746 0.22/57 0.99 with respect to forecast beta) of the standard
N= 10 0.02/28* 1.03/38 0.17/3.6 0.99

* Not significant at the 0.05 level.

L. Specifically, we note the projected similarity
of the importance of the factors for the standard
and yield DDMs and the reduction of the influ-
ence of dividend yield on returns in the bal-
anced and growth DDMs.

The analysis of the effect of truncation in the
multiple regression is less straightforward. As
projected, truncation diminishes the constant
term. The regression coefficient for ¢(Y,R) also
diminishes, because of the reduction in collin-
earity between the two explanatory variables.*

If the only effect of changing the CC value is
to change the collinearity between the two ex-
planatory variables, then the regression coeffi-
cient of ¢(g,C) would not change. In fact, we
anticipate that the importance of c(g,C), as
reflected by the magnitude of the estimated
regression coefficients, changes when the trun-
cation horizon is changed. This is what the data
in Table IV show.

For these data and time periods, a reduction
in the value of the regression coefficient of
c(g,C) as the horizon is truncated is consistent
with expectations. This is because the ex post
yield-return relation, hence the component cor-
relation, was negative for five of the six periods
and zero for the remaining period. Truncation
therefore reduces the c(g,C) regression coeffi-
cient because the ex ante CC is less similar to the
ex post CC, which is consistent with the expecta-
tion that the analysts’ information factor will be
most important when the ex ante return struc-
ture is most consistent with ex post returns.

Different Market Environments
In Table V, the alphas (regression residuals

DDM, ex post return, and yield, balanced and
growth CV-DDMs are denoted AK, AR, AEY,
AE, and AEG, respectively. In order to evaluate
the effect of scaling and truncation on the level
of the IC, we segregated time periods in terms
of similar signs of the ex post yield-return corre-
lation. All but one of the six time periods in the
database had a negative ex post yield-return
correlation; that one time period was omitted
from the time series averages when computing
the correlation differences shown in the first
panel of Table V and for c(Y,R).

The first column of data in the first panel in -
Table V presents time series averages and stan-
dard deviations of differences of cross-sectional
correlations for the CV-DDM truncated at the
200th forecast dividend. Each cross-sectional
difference represents the increase in IC associat-
ed with the CV-DDM forecast alpha of ex post
alpha over the standard DDM alpha. The final
two columns in Table V show similar data for
the final-price (CC-neutraly CV-DDM truncated
at the 15th and 10th years.

Analysis of the data in Table V shows that the
basic structure of the results is consistent with
expectations. For this time period, the less
yield-biased DDMs performed better than AK.
Also, for the same reason, truncated DDMs do
worse in this market environment. Reading
from right to left, the IC value differences in-
crease as the value of the CC becomes more
negative. The evidence suggests that scaling
may be the more effective method for control-
ling the IC.

Analysis also shows that truncation is associ-
ated with expected changes in other characteris-
tics of the model, including an increase in the
relation of dividend yield and forecast capital
appreciation. The results, especially with re-
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Table VI Comparisons of Standard with Growth and
Balanced CV-DDMs: DDM IC Differences as a
Function of c(Y,AR) (A and B&C databases;
scaling method only)

Linear Regression Estimates

¢(AE,AR) — ¢(AK,AR) a + be(Y,AR) r
A 0.060 - 0.70c(Y,AR) -0.88
B&C 0.082 - 0.69¢(Y,AR) -0.90
c¢(AEG,AR) — ¢(AK,AR)

A 0.074 - 1.01c(Y,AR) -0.94
B&C 0.077 - 0.95¢(Y,AR) -0.95
Average Difference Estimates
Databases A B&C A B&C

o(Y,AR) > 0 o(Y,AR) < 0
c(Y,AR) 0.272  0.362 —-0.164 -0.126
o(AE,AR) - c(AK,AR) -0.131 -0.167 0.174 0.169
c(AEG,AR) — C(AK,AR) —-0.201 -0.251 0.274 0.205

spect to the size of the increase in DDM IC,
should be evaluated in terms of the limitations
of the database and the fact that the method
employed was not designed to increase the IC
optimally but to determine whether projected
changes in the model’s response characteristics
would be observed.

Table VI provides further estimates of differ-
ences in the forecasting performance of CV-
DDMs in different market environments. The
results are based on the A and B&C databases;
the horizon truncation method is not included
in the analysis. Linear regressions of year-by-
year differences in either the balanced or growth
CV-DDM ICs with respect to the standard DDM
IC were estimated as a function of the value of
the ex post yield-alpha correlation. The results
are given in the first panel of Table VI. The high
R-squares indicate the reliability of the relation.
The regressions indicate the effect of the value
of the ex post yield-alpha correlation on differ-
ences in the performance of the balanced or
growth CV-DDMs with respect to the standard
DDM.

The second panel in Table VI estimates the
average difference in the performance of the
balanced or growth CV-DDM with respect to
the standard DDM assuming only the knowl-
edge that ex post yield is positively or negatively
related to ex post alpha. The estimates are de-
rived by inputting the average value of the
positive or negative ex post yield-alpha correla-
tions as the independent variable into the ap-
propriate estimated linear regression in panel 1
for the indicated database.

The data show that when c(Y,AR) is positive

(negative), the balanced or growth CV-DDM IC
will, on average, be roughly 0.15 to 0.25 less
(greater), respectively, than the standard DDM
IC. Although the standard DDM will signifi-
cantly outperform both the balanced and
growth CV-DDM when yield is positively relat-
ed to alpha, it will significantly underperform
the CV-DDM alternatives when yield is nega-
tively related to alpha.

Conclusion

Scaling and horizon truncation change the per-
formance of the model by changing the fit of the
ex ante returns to ex post data. This change in the
fit of the data, however, has financial meaning.
It reflects a more realistic security valuation
framework—one that liberates analysts’ fore-
casts from financially irrelevant structural biases
and constraints. The enhanced CV-DDM allows
for the expanded application of DDM technolo-
gy to a wide range of investment styles, market
timing strategies and market cycles without
altering the basic characteristics of a bottom-up,
price-sensitive discounted cash flow security
valuation framework.

The underlying mathematical structure of the
ex ante biases found in the standard DDM may
be intuitively described as follows. Because of
the effect of arbitrary default assumptions, the
scale of the ex ante capital appreciation of the
DDM is ambiguous. There is thus a standard
deviation problem of the scale of g with respect
to y that results in an ex ante yield bias for the
standard DDM and a levels problem that results
in the large negative component correlation
(CQ). Truncation controls the CC while scaling
controls the yield relation.

The CV-DDM is not a mechanical way of
improving the information coefficient of divi-
dend discount model results, but rather a tool
for using available information to improve IC.
An institution must be able to make simple but
reliable quantitative judgments concerning the
sign of the ex post yield-alpha relation. Although
many institutions may wish to ignore such a
decision, they cannot easily avoid it. The stan-
dard DDM, as well as many other valuation
models, represents a significant implicit bet on
the sign of the ex post yield-alpha relation. A
decision by default may expose the institution
to a significant amount of unnecessary risk.

If no reliable market or economic outlook is
available, a balanced CV-DDM may be appro-
priate. However, many financial institutions

FINANCIAL ANALYSTS JOURNAL / NOVEMBER-DECEMBER 1985 [ 57



believe they can make market environment
judgments with some reliability. Indeed, a great
deal of the deliberations of investment policy
commitees is directed toward developing expec-
tations concerning the likely characteristics of
the ex post return-generating process. What has
been lacking until now is a stock selection
method that consistently and explicitly reflects
such information.

Many issues remain for future research. In
particular, the potential use of the technology
may be far greater when based on a sector or
industry group approach. Techniques for opti-
mal implementation of the technology, in line
with available information, remain to be worked
out. Also, the management of bottom-up infor-
mation from analysts’ forecasts is not indepen-
dent of the institution’s outlook.

The evidence strongly suggests that many
applications of the standard DDM—estimates of
stock duration or required rates of return used
in rate regulation hearings and other corporate
applications—are likely to be erroneous. In par-
ticular, standard DDM changes in the estimated
parameters of the market line or plane, or levels
of stock universe returns, if they have any
financial meaning, probably reflect changes in
the default assumptions of the model or charac-
teristics of the underlying stock universe.”

Perhaps the most important general conclu-
sion to be derived from the analysis is that the
standard DDM may be a case study of how all
non-scenario-dependent valuation models
work—i.e., “they work for a time and then stop
working.” Most “black box” valuation models
are likely to contain hidden biases at least as
severe as those found in the standard DDM.
With the CV-DDM, however, the user is provid-
ed with a detailed description of the ex ante
statistical characteristics of the valuation prior to
its use and with the tools necessary to make the
appropriate changes. l

Footnotes

1. See W. Sharpe, Investments, 2nd ed. (Englewood
Cliffs, N.J.: Prentice Hall Inc., 1981), pp. 381-382.

2. Ibid., p. 385.

3. R. Michaud and P. Davis, “Valuation Model Bias
and the Scale Structure of Dividend Discount
Returns,” Journal of Finance, May 1982.

4. The data employed in the analysis are derived
from the A, B, C and D DDM databases described
in Michaud and Davis, op. cit. For the A database,
1981 data were added. The D database was used in
the analysis of alternative discounted cash flow
formats and.tests because it was the only one with

sufficient information for full reconstruction of
DDM returns. The conclusions from the statistical
analyses must be considered in light of the signifi-
cant limitations of the data.

5. See K. Ambachtsheer and ]. Farrell, “Can Active
Management Add Value?’ Financial Analysts Jour-
nal, November/December 1979.

6. Although the assumptions used—a stock universe
of general institutional interest, a one-year time
horizon and a standard DDM—may appear criti-
cal, they are not necessary for application of the
method; the values of the coefficients and con-
stants would probably change, however, given
different assumptions.

7. This is described in Michaud and Davis, op cit.

8. The argument is as follows: If we perform a new
multiple regression by replacing ¢(g,C) with a
factor that is the residual of the regression of
c(g,C) on ¢(Y,R), the R-square and the coefficient
of the ¢(g,C) residual factor will be the same, but
the coefficient of ¢(Y,R) will diminish. This result
assumes that the original multiple regression coef-
ficients for c(g,C) and ¢(Y,R) are positive and that
the factors are negatively correlated.

9. See Sharpe, Investments, op. cit., pp. 368-369.

Appendix

Decomposition of DDM IC
Let the standard DDM return forecast be:

K=y+g, (AD)

where

y = forecast dividend yield and
g = forecast growth, or capital appreciation.
For the conditional valuation DDM forecast, let:
E=y +xy +b, (A2)

where

x = scale factor and
b = scale constant.

Actual subsequent total return is defined as:
R=Y+C, (A3)
where

Y = actual dividend yield and
C = actual capital appreciation.

Proposition
The proposition is as follows:
¢(E,R) = [-0.065 + c(g,c) + c(Y,R/x]
VI + $-1.3x)]  (A4)

where c(u, V) denotes the correlation of u with v.

Equation (A4) is the same as Equation (2) in the
text.
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Corollaries

A corollary is that if x equals one, E will equal
K and: ’ '

c(K,R) = —0.08 + 1.2¢(g,C)
+ 1.2¢(Y,R),  (A5)

which is the same as Equation (1) in the text.
Another corollary is that if x equals two, then
E' represents a “balanced” DDM and:

c(E",R) = —-0.08 + 1.3c(g,C)

+0.65c(Y.R),  (A6)

which is the same as Equation (3) in the text.

Proof
1. ¢(E,R) = c(y + xg.R)
cov(y + xg,R)/(or/or).
c(y.R)oy/og + (g R)(xo/oE)
(xolog) [c(y,R)(ay/x0,) + cov (g, Y
+ O)]

= (xa/og) [c(y,R)(oy/xay) + c(g,C)
(UC/UR) + C(g,Y)(Uy/U'R)],

where o, represents the standard deviation of
u.
2. Lemma: If c(y,Y) = 1, then c(A,y) = c(A)Y).

Proof: If c(y,Y) = 1, then y = e + fY and
c(A,y) = c(AY) and by continuity of c(u,v).
3. Approximations

LI B

(i) For stock universes of general institutional
interest the lemma should express a valid ap-
proximation. Applications of the lemma:

c(g.y) = <(g,Y); c(Y,R) = c(y,R).

(ii) Observations from empirical data for large
stock universes of general institutional interest:

gc = og; oy = 0.1 og.
(iii) Standard DDM relations:
oy = oy c(g,y) = —0.65;
og = 0,V(1 + X* — 1.3x).

4. Applications of the approximations
Application of Approximation (i):

¢(E,R) = (xoy/ag) [c(g,y) (ov/oR)

+ c(g,C) (ador) + o(Y,R) (oy/xap)]. (i)
Application of Approximation (ii):
¢(ER) = (xay/og) [0.1c(g,y) + c(g,C)
+ (Y, R)(o,/x0y)].  (4ii)
Application of Approximation (iii):
¢(ER) = [xV(1 + x*—~1.3x)][—0.065
+ c(g,C) + «(Y,R)/x]  (4iii)

5. Proof of Corollaries: Evaluate (4iii) at x = 1 or x
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